Linearized fields for causal variational principles: existence theory and causal structure
نویسندگان
چکیده
منابع مشابه
Perturbation theory for critical points of causal variational principles
The perturbation theory for critical points of causal variational principles is developed. We first analyze the class of perturbations obtained by multiplying the universal measure by a weight function and taking the push-forward under a diffeomorphism. Then the constructions are extended to convex combinations of such measures, leading to perturbation expansions for the mean and the fluctuatio...
متن کاملCausal variational principles on measure spaces
We introduce a class of variational principles on measure spaces which are causal in the sense that they generate a relation on pairs of points, giving rise to a distinction between spacelike and timelike separation. General existence results are proved. It is shown in examples that minimizers need not be unique. Counter examples to compactness are discussed. The existence results are applied t...
متن کاملJa n 20 09 CAUSAL VARIATIONAL PRINCIPLES ON MEASURE SPACES
Causal variational principles on measure spaces are introduced. General existence results are proved. It is shown in examples that minimizers need not be unique. Counter examples to compactness are discussed. The existence results are applied to variational principles formulated in indefinite inner product spaces.
متن کاملSpinor fields in Causal Set Theory
The goal of this paper is to define fermionic fields on causal set. This is done by the use of holonomies to define vierbines, and then defining spinor fields by taking advantage of the leftover degrees of freedom of holonomies plus additional scalar fields. Grassmann nature is being enforced by allowing measure to take both positive and negative values, and also by introducing a vector space t...
متن کاملJu n 20 09 CAUSAL VARIATIONAL PRINCIPLES ON MEASURE SPACES
We introduce a class of variational principles on measure spaces which are causal in the sense that they generate a relation on pairs of points, giving rise to a distinction between spacelike and timelike separation. General existence results are proved. It is shown in examples that minimizers need not be unique. Counter examples to compactness are discussed. The existence results are applied t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods and Applications of Analysis
سال: 2020
ISSN: 1073-2772,1945-0001
DOI: 10.4310/maa.2020.v27.n1.a1